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Summary /i

The conform transformation for a given random profile can be determined by

means of the method designed by Timman (7). Here an auxiliary or starting profile

is used of which the transformation is known and which is as consistent as possible

with the given profile.

This starting profile is then deformed by iteration until the desired profile

shape is achieved.

A Karman-Trefftz profile is used for the starting profile.

\ For these profiles the characteristic quantities which determine the profile

shape, such as the size of the radius of the nose, the maximum thickness and position

of the thickness as well as the slope of the tail and arching [are determined as a function

of the transformation variables. With the figures and drawings presented in this

article it is possible to choose well the required starting profile.
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1. Introduction /]_

An important help in calculating the potential theoretical pressure distribution

around a|wing profile is the technique of conform image formation.

By this means a circular or almost circular contour in one surface ' (;) is

converted into a'wing profile into the other surface (z). The flow around the

profile (z-lplarel ) then starts from the known flow around the circle l5-jplanej,) and

the image function is totally determined.

In the years before and after the First World War a large number of transform-

ation formulae were derived.

The best known of these image functions is that of Joukowsky (1) in which a

circle in the ]d-|planer is converted into a[wing profile with an angle of slope

' ?.i= 0 in the z-jjplan~e~̂

The image function required for this purpose has two zero pointsr^that isf> points

for which the derivative of the image function is equal to zero". One zero point lies

on the circular contour and is transferred in the image to the shaft rear edge of the

profile.

The other zero point is surrounded by the circular contour and affects the form

of the profile.

The image method of Joukowsky offers only two possibilities of varying the

profile shape|^ specifically^-thickness and arch.

The more general transformation formula of Karmann and Trefftz (2) has besides

the already mentioned possibilities of variation, thickness and arch, the possibility

of choosing the., angle of slope. The image function also has two zero

points. The zero point located on the circular contour is transferred in the image

into the rear edge of the profile with an angle of slope1 « different from 0.
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For the special case of the angle of slope 6 = 0 the image function can be

simplified to that of the Joukowsky profile.

For more practical applications sometimes an S-bend in the profile shape is

desiredl; that is?the profile nose is bent downwards and the profile slope bent

somewhat upwards, to form the S-shaped frame.

The von Karman-Trefftz transformation is not able to generate this type of

profile. The skeleton of the von Karman-Trefftz profile is specifically sickle-

shaped and consists of two circular arcs. Mises (3) made this S-shaped profile /2_

possible by allowing more than one zero point to be formed inside the circular

contour. The lower position of these zero points is regulated by the requirements

that the image function must be unique, specifically that there should be no log-

arithmic turn in the image function.

For the derivative this means no term with l/r̂ .( The necessary prerequisite is

that the center of gravity of all the zero pointsi;; that is,-the zero point placed on

the circular contour as well as the ones enclosed by the contour coincide with the

origin of the surface of the circle,; c = 0.

If the number of zero points inside the circular contour is limited to one/^then

the image function is simplified to that of the Joukowsky profile.

A detailed discussion of the| Joukowsky [ von Karman-Trefftz and Mises profiles

is given in (4), (5) and (6).

In (4) and (5) attention is also paid to the two profile families designed by

Mueller. These are closely related to the von Karman-Trefftz family and have the same

possibilities for profile variation.

It is also worth mentioning that really random profile shapes cannot be described

with the indicated transformation formula. According to the image position of Riemann^

the conform image of the circle to a given random profile is always possible, but ean-

not be given in the form of a formula.
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An elegant method by which the transformation of a random profile form can be

achieved numerically by iteration was given by Tiemann (7).

Here, the conform transformation of an arbitrary profile is found by starting

from a so-called initial profile of which the transformation is known.

The starting profile has the same angle of slope as the desired profile shape

and must be as consistent as possible with it (the same nose radius and/or thickness

and degree of arching). The starting profile (a von Karman-Trefftz profile) is then

deformed by iteration until the desired profile shape is achieved (8), (9).

For a quick and responsible choice of the starting profiler it is desirable to

have a survey in which: the nose radius, the maximum thickness, the place of the /3

maximum thickness and the slope of the tail are given as a function of the variables

from the transformation formula.

This report will first give a short review of the von Karman-Trefftz profile

family.

Subsequently^relations are derived by which the nose radius, the maximum thick-

ness and the site of the maximum thickness can be determined. Finally^the indicated

quantities are shown in a number of figures as a function of the transformation

variables.

2. Von Karman-Trefftz profiles /!

The image function given by von Karman and Trefftz (2) is:

t+b\ k

( (2.1)

in which b is a real constant.
I "'/

With the choice of the angle of slope k = 2 -||i .

The image function can also be written as:
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hfa (C* b)k+ (C - b)'

(C + b)k - (C - b)
1 (2.2)

The derivative over of this image function is then:
- b)

k"1

K 2
b) - (C - b)]

The points'?,- +_ b as may be seen from -equation (2.3) are points in which '

= 0.

If in infinity the field of flow, iii-the z-|plane; - must be identical to that in

the i ̂'-'pLine \ than the conditions must be satisfied: iaf'= 1 for c +-•
- -^>- i r_i - — •

The expansion into a series of functions (2.2) gives:

x - C
k2- 1 b2 (k2 - 1) (k2 - V b4__ j_ _

(k2 - 1) (k2 - 4) (2k2 - 11) b6 _
(2.4)

From equation (2.4) we obtain for the derivative:

dz k2 -
15

(k2 - 1) (k2 - U) (2k2 - 11)
F33

(2.5)

That isrthe condition imposed is satisfied.

The circle Cl is shaped as a profile in which the zero point lies on a contour
i~~-i

of the circle,<c= + b is shown as a sharp rear edge of the profile, z = + kb (see

figure 2.1).

The skeleton of this type of profile is formed by two circular arcs; the latter

lie between the images of the two zero points, z = +_ kb, and enclosed between them an

angle! 6 (see figure 2.2). The skeleton arises from the circle CO which touches in

U_ = +b the circle Cl and passes through the other zero point, 5= -b.

It is easy to see that for the angle of slope'«= OF that is^k = 2 the image

function (2.4) and the derivative (2.5) are transformed into the Joukowsky profile:

/5
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dz

! (2.6)

(2.7)

The skeleton is reduced to a twice traveled circular arc placed between the points

z = +_ 2 b, the images in the z-plane ( joflthe two zero points c = +_ b (see figures

2.3 and 2.4)

3. The Slope of the Tail and the Arch 76

In the previous chapter it was already stated that the circle CO is formed as a

sickle-shaped contour consisting of two circular arcs placed between the points

z= +_ kb (figure 2.2).

The lines of contact at the points z = +kb on both circular arcs"form with the

real axis an angle (6) of formula:

• (3J)

('-£)-! ,
- 6 (3.2)

respectively in which jej, the angle between the "first profile" and the real axis

(see figure 2.2) is a measure of the arching of the profile.

From equations (3.1) and (3.2) it now follows:

or also:

in which the slope of the bisectrix of the angle of slope

(3.3)

(3.4)

6., The relation

between the slope Y'and the anglej6 is given in figure 3.1.

For the case when the lower of the two circular arcs, which form together the
j—•-

skeleton is reduced to a straight line ([Y2 = 0) expression (3.3) becomes:
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"FD (3.5)

The variation of the angle of slope's with the arch : B , according to the above

expression is given in figure 3.2.

Figure 3.3.shows a profile with flat lower portion of the skeleton.

4. The Chord of the Profile /7_

For standardizing the profile coordinates the chord c is-'introduced.

The first point of the chord is considered as coming from the real point N (see

figure 4.1).

For the point N we have:

j c= b - 2 cos B (4.1 )
i . ..

assuming that the circle Cl has a radius R = 1.

The substitution in the image function (2.2) gives:

With the image function (2.2) this gives:

The size of the chord is then:

After some conversion we find:

We can speak of a symmetrical profile (!e = 0) and the expression (4.6) is simplified

to:

1 * /'i b >
i LL V <^z • kb - ) b Nk

1 " y cos ej

(4.2)

J

e point T for which we have:

i C - + b

z • + kb

/ u \u '

' " \ cos $/

2kb

1 - fl - M"\ cos By

(4.3)

(4.4)

(4.5)

1 (4.6)
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I C
2kb

symm 1 - (1 - b)k (4.7)
/8

For a Joukowsky ; profile, the angle of slope||= 0 (k = 2) relations (4.6) and (4.7)

become respectively: _

! c - * cos2 B (4.8)
' Joukowsky 2 cos B - b
Iand: r _ - . - . - - _-_-_-------

t
Csymm.Joukowsky 2 - b (4.9)

5. The Radius of the Profile Nose /9

To establish an expression for the nose radius-we use a method given by Timman

(7). If two real functions!0!and \ T iare defined in such a way that:

4l = e°+iT • (r, i)t i dc v >> • i;

then the radius of the curve of the profile section may be written as:
r"^S ; <5-2)

in whichie gives the corresponding placeTon the circle contour. To further simplify

the expression of the derivative (2.31-̂ the following relations ar^ introduced:
up,

(? + b)k - (C - b)k = r3 e""
3

(5.3)

(5.4)

(5.5)

The geometrical meaning of rl, r2,[̂ 7 and" ̂  follows from figure 5.1.
i ' i — '

The substitution of:(5.3), (5.4) and (5.5) in (2.3) gives:

dz _ i, ,.2. 2 *r2
, Kl(r, e } (5.6)

,(r3e

up,

From this we find for:
"xk-1

(5.7)
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|T » arg(dz)- arg(dc)- (k - 1) (tp, + tpj)
i ,

and:

From figure 5.1 follows:

r, - 2 sin If

= (n + 9) -

+ 2-2 cos 9 + 4b(cos (9 - 6) - cos 0)

sin B * sin (9 "6)

i *2 ' arctan V2b - cos B + cos (9 -

The substitution of (5.3)_and (5.4)_iĵ |5.5) g^ves:

2k I k kr] - 2r^ r^ cos

k k/r. sin kip. - r. sin ktp.\
= arctan f-£- i L L)

'2 cos k<p2 - i-j cos kip^

The derivatives of rl, r2, r3 , ,w r v 2 \

i a /_

<P3; overj e; are then:

cos

27~ (2 sin 6 - 4b sin (8 - 6))

(tP2) " — ]-j (2b cos (8 - 6) - cos 8 + 1)

(5.8)

i
' (5 .9) /IP

J

(5.10)

(5:11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

'(5.18)

(5.19)

VI

sin

r2 B9~ cos (ktp2 -

/dtp. d«p.

r
2

)

(5.20)

r3

dip.

"

dr.

~ r2 r jK s i n (kip2 - k(p^)

>, ^

^2 . r ic
5e~ i cos (kip2 - fop,) '(5.21)
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By substitution of (5.10), (5.12) and (5.14) in the expression for e° (5.7)

and of (5.17), (5.19) and (5.21) in the expression for . i ̂  • (5.9),,for each value
L-

of the variable e in the'c-j-jplanej the radius of the curve of the profile circum-

ference in the z-J plane can be determined.

5.1 Symmetrical Profiles

For a symmetrical profile ( ej= 0) the nose of the profile arises from the point

je = n- of the circular contour Cl in the cr plane \ The expressions for rl, r2, r3

and the derivatives over! e of'•'<or <PZ
 and ^3 are then respectively:

_. (5>22)

r,- 2 ( 1 - 5 ) , (5>

* i

r 2 - 4k ((1 - b)2k + 1 - 2 (1 - b)k) . ((5.
i

d /' v 1 '-fS Up.) • -~
\ d9 . ' 2 (5.

d («L) - 'd8 "T 2(1 - b)

2k 1 k-1 (5.
d / • k (1 - br + 1 - (2 - b) (1 - b)K

de 3 2 (i - b)
2k + i - 2(1 - b)k :

- - - - - (5.

For 'e° j and . \ -^ ' . we may write:

! T ,'i2 n " b) -i '(r.! fe "ku , * d - b)'
k - 20 - b)k (j-

! Jr <•> - ^ 1 + (1 - b)214"1 - (2 - b) (1 - b)k'J
' 51 - (k - 1) ̂ l) . ^) " k 2k \k 1 (5

and therefore for the radius of the profile nose: _
2k2b(l - b)k

symm , .\ ,, ,, ,, . v 2 k ,. .\ (5.

23)

24)

25)

26)

27)

28)

29) 712

30)

or rendered dimensionless with the expression for the chord (4.7)

I '

fc'synm (k - 1) + (k + 1) (1 - fa/ (5.31)
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For a Joukowsky profile, the angle of slope 6 = 0 (k = 2) simplifies the expres-

sion (5.31) to: ,
(l) „ 2(1 - b)2 ,g 32v
^C/symm. Joukowsky 1 + 3 ( 1 - b)2 j

In figure 5.2 for a series of angles of slopeuthe relation between the radius of the

nose of the symmetrical von Karman-Trefftz profile and the transformation variable

b is given.

5.2 Arch Profiles

If the profile is arched (B different from 0) then it is not clear directly

which point| 9(0f the circular contour is transfered in the u-jpianej into the nose

of the profile in the z-| plane _J(10).

Betz and Keune (11) and Ginzel (12) give for this the point E located on the

circular contour (figure 5.1).

In the 'T[ c-[plane i is the shortest distance from the circular contour to the

zero point !<r= -b (11 ).
i* *

Now the To' of the point E is known, so the relations for i ea (5.7) and j|l"| .

(5.9) can be calculated and the radius of the nose of the arched profile is also

known.

In figure 5.3 to figure 5.7 for a series of angles of slope the relation is

given between the radius of the nose of the arched von Karman-Trefftz profile in the .

transformation variable b.

If the figures 5.2 to 5.7 are placed one over the otherrthen each following /13~

figure can be produced from the previous one by accomplishing the displacement.

It is apparent that this can be done at least with one figure, specifically 5.2

and the following simple relation:

(1 - «s 6)
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It can be noted that the curves in figure 5.3 to 5.7 all intersect at the point

b = cos, B, r/c = 0.

In the case of the symmetrical profile 6 = 0, the point is: b^= 1, r/c = 0

(figure 5.2).

The earlier mentioned shift is then: 1 = cos: B.
t r I

If the radius of the nose, the angle of slope|^[and the arched [spine ;of the

given profile are known, then it is possible to determine the transformation variable

b with figure 5.2 and expression (5.33).

With the quantities 6, e and brjthe starting profile of Timman (7) has been

established.

6. The Profile Shape /14

Expressions for the coordinates of a von Karman-Trefftz profile can be derived

in a very simple manner.

The substition of (5.3), (5.4) and (5.5) in expression (2.2) gives:
I iw? i '<P< i

,
r3e

After conversion we obtain:
z = — (cos tfl, - i sin <pj (r (cos \vf>2 + i sin\ — —— < ^X 9 \*w —— "fo • • — - • • -~̂ m r ^

3 \ o • t /
I.

H r^ (cos kipj + i sin kq̂ ))

The splitting of z into a real and imaginary portion gives:

x = Re(z) = —- (r cos (lop. - (p,) + r, cos (ktp, - ip,)) If, l.\
i r - ^ Z J . i ' J \ u • d /

y - lm(z) - ~ (r k sin (k<p. - (p,) + r.k sin (ktp, - «p,))
3 2 3 1 1 3 (6.4)

Using the relations (5.10) to (5.15) for each pointre of the circular contour in the

i H?1^6'̂ ^6 coordl'nates x and y of the profile are determined in the z-plane.

The equations (4.4) and (4.6) are used for standardization of the chord c of

the profile.

-13-



7. The Maximum Profile Thickness /15

The maximum thickness of a profile can be defined as the distance between the

lines of contact on the profile contour which are parallel to the real axis (see

figure 7.1).

The determination of the profile thickness is then reduced basically to finding

the extreme values of yn specif icallyj,(the solution of the equation / f^ (y) - o. '

The differentiation of the expression (6.4) over e gives:

w < > ) = kb (r (k r k-' l!i
r3

k /r2 cos (ktp2 - «p») 1

k . . /

sin (kip- " W

dip dtp x
k -̂=. - — i)

dtp, d<p,XN

k-1 dr1* k r, ' g^i sin

(7.1)
, UH,1 "^X^

r," cos (k<p, - (p,) I

sin (ktp2 - «p3) -»• ri sin (ktp, - v

With expressions (5.10) to (5.21)^it is now possible to determine for each value of

the variable e ; in the c-plane the '\"ss'(y).

Generally there are three points e on the profile contour for which y reaches
' 17d L >an extreme value 'j^ (y) ̂  = 0; see figure 7.1).

The above given definition is not suitable for arched profiles. From figure 7.1

with this definition it follows from 7.1 that the point of the maximum thickness can-

not be indicated uniquely. Therefore in the following we were only considering

symmetrical profiles (;e = 0).

7.1 Symmetrical Joukowsky Profiles^

For a symmetrical Joukowsky profile the expression (2.6) may be written as:

z - (b - 1) + (cos 6 + I sin 6) + t>2(b - 1) + b2(cos 6 - 1 sin 9) |
(b - 1)Z + 2(b - 1) cos 9 + 1 (7.2)
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The splitting of z into a real and imaginary portion gives for the x and y coordinates: /1 6

, 2
b (b - 1) + b cos 9 _ , .

2 , (7.3)

b2 sin 6
y = lm(z) = sin 6 7 ,y (b - 1) + 2(b - 1) eos 6 + 1

i

(7.4)

For the derivative of y overawe may write:

-TX (y) = cos 6 £25 ± —— 3— i (7.5)
d9 {(b - 1) + 2(b - 1) cos 6 + 1 } I

i

The solution of the equation ; £_ (y) = 0 gives the values ofje'for which y reaches
I , —

an extreme value.

After the necessary conversion and the introduction of:

j (b - I)2 + 1 - B | (7.6)

a third degree equation in cos le is obtained:

Mb - D2 cos3 9 + l»B(b - 1) cos2 9 + B(B - b2) cos 6 - 2b2(b - 1) = 0 : (7.7)

To solve this equation^the method indicated in (13) is used.

The first |rop̂  ] (cosl e;)l, gives two values for | e in which ! e2 = 2* - er The

substitution of |9i or JV in expression (7.4) gives half the maximum figures. The

position of the thickness is obtained with (7.3).

The second | root_i is: (cos|e-)2 = Ijyithat is^e3 '= 0 and : e4 - 2*. j , specifically

giving the tail point of the profile.

The third (rooFf, (cos|e;)3 is more than 1 and has no other practical meaning.

7.2 Symmetrical von Karman-Trefftz Profiles

The maximum profile thickness (see figure 7.2) should occur when:

-15-



The substitution of the expression for (5.8) in the above relation gives:

(7 9)
+ j + (k - i) (tp2 -up,) - 2ip3 = TT

in which! <P,, <P2I and <P3|are functions of 9|(see specifically the relations (5.11),

(5.13) and (5.15)).

The value of jj*j which satisfies the requirements formulated in (7.9) is found

by means of an iteration process.

The substitution of the fejcalculated by this means in expression (6.4) gives

half the maximum profile thickness. The position of the maximum thickness is

obtained with equation (6.3).

Figures 7.3 and 7.4 give for a series of angle of slope the maximum profile

thickness (in percentage c) and the position of the maximum thickness of the function

of the transformation variable b.
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ZETfl / Z-PLflNE.
DELffi=18.GOO(DEGR)
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XCM =-0.106
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F/R =0.073
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1ST flXIS

2ND flXIS

Figure 2.1: Von Karman-Trefftz profile
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ZETfl / Z-PLflNE
OELTR=18.0001DEGR)
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__ 2ND flXIS

Figure 2.2: Von Karman-Trefftz skeletons
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Figure 2.3: Joukowsky profile
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Figure 2.4: Joukowsky skeleton

-21-



<X"
I—
LU

S*< _m

UJ

0.00 5.00
HELLING V/D

•X*

S .30'

10.00 15.00 20.00 25.00 30.00
BISSECTRICE V/D STRflRTHOEK (GR)

Figure 3.1: Arching |B; as a function of the slope ''Yi for different
Key: (1) arching; (2) slope; (3) bisectrix; (4) angle of slope
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Figure 3.2: Arching i«]~as a function.Af_.the angle of slope |«| for a
flat skeleton bottom (YZ • o>. i
Key: (1) arching; (2) angle of slope-
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Figure 3.3: Von Karmarnjrefftz profile with flat skeleton
bottom (i2 • °>-
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Figure 4.1: Definition of the profile chord
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Key: (1) ZETA-plane
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Figure 5.2: Radius of nose on (% c) as
a function of the transformation variable
b. ( B;= 0-degrees): Key: (V) radius of
nose.

Figure 5.3: The radius of the nose r
(% c) as a function of the transformation
variable b Oe = 2.5 degrees).
Key: (1) nose radius.
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Figure 5.4: Radius of the nose r (% c) as
a function of the transformation variable
b.i (8 = 5.0 degrees). Key: (1) radius of
the'-'n'ose.

Fig.,5:5:Radius of the nose r (% c) as a
function of the transformation variable b.
''P6",= 7.5 degrees). Key: (1) radius of
the nose.
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Figure 5.6: Radius of the nose r (% c)
as a function, of the transformation
variable b (|B = 10.0 degrees). Key:
(1) radius of the nose.

Figure 5.7: Radius of the nose r (% c)
as a function, of the transformation
variable b (;.B = 12.5 degrees).. Key:
(1) radius of the nose.
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Figure 7.1: Lines of contact on the profile contour
proportional to the rear axis.
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Figure 7.2: Determination of the maximum thickness
for a symmetrical von Karman-Trefftz profile.
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Figure 7.3: Maximum profile thickness
(% c) as a function of the transformation
variable b (|8' = 0 degrees).
Key: (1) maximum profile thickness.

Figure 7.4: Position of the maximum
profile thickness (% c) as a function
of the transformation variable b
( I6 = 0 degrees). Key: (1) position of
the maximum profile thickness.
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